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Summary. With the improved control of the nanostructure and the handling of multicomponent

systems in sol–gel chemistry, the research interest in this field increased significantly in the past

decade. For the characterization of the nanostructure of inorganic–organic hybrid materials, small-

angle X-ray scattering has proven to be one of the most important techniques. By using X-rays from

synchrotron radiation sources, even the structural development during processing can be followed

in-situ. This short note reviews some analytical evaluation procedures used to study hybrid mate-

rials. While numerical simulation tools are nowadays available to obtain detailed fits of scattering

curves, the use of analytical models is still very useful if the evaluation and interpretation of the

obtained parameters is straightforward.
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Introduction

In the past decade hybrid inorganic–organic materials attracted increasing scien-
tific interest. Sol–gel chemistry not only offers the possibility to develop new types
of ceramics or glasses, but also to incorporate organic moieties in inorganic mate-
rials due to the mild reaction conditions [1]. Together with the improved control of
the mesostructure and the handling of a multicomponent system, an enormous
variety in combining the different components allows to deliberately tailor materi-
als with improved or new properties. In the past decade, this has stimulated
research in areas that include catalysis and sensors [2], coatings [3], membranes
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[4], nanoreactors [5], or in electronic applications [6]. Modern chemistry enables
the control of size, shape surface area, surface, and interfacial properties as well as
the mutual arrangement and morphology from completely disordered to comple-
tely ordered states of matter in the range between 2 and 500 nm [7]. The develop-
ment of large, low density silica monoliths, which can additionally be produced
with a hierarchical organisation of macro- and periodically oriented mesopores [8],
further extends the potential field of application to structural materials.

Small-angle X-ray scattering (SAXS) is one of the most powerful methods to
characterize the structure of materials at the nanoscale [9, 10]. Scanning of speci-
mens enables the determination of the nanostructure in the laboratory with a posi-
tion resolution of 50 microns, which is of particular importance for hierarchical
structures such as the biological hybrid material bone [11]. The further develop-
ment of focussed X-rays from third generation synchrotron radiation sources
improves the position resolution in real space down to the submicron range (e.g.
100 nm X-ray beam using a wave-guide structure [12]). The high intensity of X-ray
beams in synchrotron radiation sources additionally allows to follow the formation
and evolution of the network during sol–gel processing with a time resolution in
the range of minutes or even seconds [13].

Due to the enormous amount of scientific literature published in this research
field in the last years, an extensive overview is nearly impossible and would exceed
the length restrictions of a journal article. Thus, we concentrate in this work on
describing a number of simple analytical evaluation procedures which have been
used to determine the nanostructure in hybrid inorganic–organic materials using
SAXS. In general, computer simulation techniques coupled to numerical fitting
procedures have proven to be very powerful in describing small-angle scattering
from complex matter. The three-dimensional shape and domain structure was de-
termined by ab initio modelling from one-dimensional SAXS patterns [14, 15] and
successfully applied, e.g. for biological macromolecules [16, 17]. The advantage of
analytical evaluation procedures is that they can easily be compared to the large
amount of data available in the literature, if the interpretation of the obtained
structural parameters is straightforward. The intention here is not to give a full
account of such analytical procedures or review all evaluation methods published
in literature, but to focus on some very useful simple procedures and their physical
background.

SAXS in Inorganic and Hybrid Materials

Polydisperse Systems

Polydisperse systems consist of basic structural units covering an extremely wide
range of size distributions. An example for such systems are sol–gel derived aero-
gels, which exhibit a highly porous and foam-like structure at the nanometer scale
(Fig. 1). Typical features of the structural composition at this scale are visualized in
Fig. 2: particles build up a network of branched clusters up to a certain length scale,
above which continuum-like behavior is observed. In the following, we focus here
on a silica=titania system originating from a single-source precursor. A precise
description of the chemical composition and processing may be found in Ref. [18].
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For a material, consisting of a collection of identical particles and for example
forming a network, the scattering intensity can be written as Eq. (1) [19, 20].

IðqÞ ¼ I0NV0
2FðqÞSðqÞPðqÞ ð1Þ

Here I0 is a constant containing experimental parameters such as beam intensity,
phase contrast between the two phases, and additional variables due to the setup
of the experiment. N is the number of primary particles, V0 is the volume of the
primary particle, S(q) the structure factor describing the packing of the primary
particles, P(q) the form factor of the particle, and F(q) a factor to correct for
concentration effects due to close packing. Usually, this equation has to be supple-
mented by the background scattering BGR from the specimen or the equipment as
in Eq. (2) [20].

IðqÞ
I0

¼ BGRþ NV0
2FðqÞSðqÞPðqÞ ð2Þ

Fig. 1. Structure of an aerogel at different length scales: a) foam-like structure at the nanometer

scale, b) coarse structure at the micrometer scale, c) monolith at the centimeter scale

Fig. 2. Scheme of the structural features of a network built up of particles
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For the volume, a widely used choice is to assume particles of spherical shape with
a radius r, V0¼ 4�r3=3 [16]. The form factor for spherical particles is well-known
as Eq. (3) [21, 22].

PðqÞ ¼ ð3ð sin ðqrÞ � qr cos ðqrÞÞ=ðqrÞ3Þ2 ð3Þ
The strong oscillations of the function given by Eq. (3) are usually smeared out to a
varying degree depending on the size distribution of the particles. For a very wide
size-distribution, a convenient approximation is the Debye function (Eq. (4)) [19,
20] which tends to become unity for q!0 and towards 9=2(qr)�4 for large q, which
matches the average large q decay of the exact solution for the form factor of a
single sphere [21, 22].

PðqÞ ¼
�
1 þ

ffiffiffi
2

p
q2r2=3

��2 ð4Þ
However, the decay of Eq. (4) is smooth, because the oscillations of the exact
solution for monodisperse particles are smeared out. The curvature of the form factor
at small values of q is also quite different for the Debye approximation, that is,
PðqÞ � 1 � ð2

ffiffiffi
2

p
=3Þq2r2 instead of PðqÞ � 1 � q2r2=5 for the exact solution for

monodisperse particles. The largest deviation is around q r¼ 2.4, where the Debye
approximation underestimates the exact solution by about a factor of 4 (Fig. 3). This
curvature generally depends on the particle size distribution and in this sense, the
Debye approximation corresponds to an extremely wide size distribution.

A simple expression can be obtained for the structure factor S(q) by assuming
individual scatterers with a spatial distribution according to a power-law correla-
tion function and a cut-off distance �. The parameter � is a correlation length,
above which the material exhibits macroscopic density and continuum-like, but
not fractal behavior [23, 24]. This correlation length can then be related to the
radius of gyration rg of the clusters by Eq. (5) [24].

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðDþ 1Þ

p
rg ð5Þ

Fig. 3. Comparison of the form factor for monodisperse spheres, Eq. (3), to the Debye approxima-

tion, Eq. (4)
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D is the fractal dimension of the aggregate of particles. For monodisperse spheres,
rg ¼

ffiffiffiffiffiffiffiffi
5=3

p
r and in the Debye approximation, rg ¼ 81=4r. The choice of a correla-

tion length (the cluster size) together with individual scatterers, which obey a size
distribution according to a power-law, enables an analytical solution, Eq. (6), for
the structure factor by Fourier transformation [23], where C is a constant.

SðqÞ ¼ 1 þ C�ðD� 1Þ�D
q�

�
1 þ 1

ðq�Þ2

�ð1�DÞ=2

Sin ððD� 1Þarctan ðq�ÞÞ ð6Þ

If the cluster size exceeds the accessible range of the equipment, Eq. (6) may
further be simplified to Eq. (7).

SðqÞ ¼ 1 þ C�ðD� 1Þ�D
q�

Sin ððD� 1Þ�=2Þ for � ! Infinity ð7Þ

There are some minor differences in the prefactors of Eq. (6) in literature [19, 20,
23–25]. In principle, NV0 is proportional to the total volume of the particles and
1 þ C�ðD� 1Þ�D to the number of particles per aggregate, derived from the limit-
ing behavior towards q!0 [25].

Figure 4a shows a scheme of the scattering curve of an aerogel network, with
the continuum range for 1=q>�, the network range with a decrease of the scatter-
ing intensity I(q)/ q�D for a mass fractal and I(q)/ q�ð6�DÞ for a surface fractal
with fractal dimension D, and the surface range, where the intensity decays with
I(q)/ q�4 due to a sharp interface between two phases (known as Porod’s law
[26]). In Fig. 4b, an example of a mixed silica–titania aerogel is shown together
with the fit of the curve according to Eq. (2).

With such approximations, the evaluation of SAXS data enables the determina-
tion of the particle and the cluster size as well as the fractal dimension. One should

Fig. 4. a) Schematic of the scattering diagram of an aerogel built up of a network of particles; the

chosen dimensionless parameters were particle size r¼ 0.5, cluster size �¼ 20, and fractal dimension

D¼ 2; three ranges are visible, the continuum range 1=q>�, the network range �>1=q>r, and the

surface range of the particle r>1=q; b) experimental data of a calcined silica–titania aerogel with

background normalized to 1 and fit parameters r¼ 3.9 nm, cluster size �¼ 50 nm, and fractal dimen-

sion D¼ 1.9
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be careful in the interpretation, if the fractal range is small so that a linear decrease
of the intensity is hard to identify. It should also be kept in mind, however, that
there are considerable approximations in these analytical expressions. Computer
simulations of particle aggregation are now available [27], which allow direct pre-
dictions of scattering functions and much more reliable comparisons. Dense net-
works exhibit a higher value of the fractal dimension than open networks. The
fractal dimension allows to draw conclusions on the specific form of aggregation:
Computer simulations have shown that particle-cluster or hierarchical cluster–
cluster aggregation together with diffusion-limited, ballistic, or reaction-limited
aggregation processes lead to distinguishable values in the fractal dimension [28].

Clustered Material with Short-Range Order

New types of hybrid inorganic–organic materials have been produced by introduc-
ing nanosized inorganic building blocks, which maintain their integrity, into
organic polymers. The covalent bonding of these clusters to the organic polymer
chains is achieved by using clusters substituted by polymerizable organic groups as
precursors in polymerization reactions [29]. Phase separation frequently occurs in
such systems during preparation due to difficulties in controlling the size and shape
of the fillers inside the organic medium [30]. The presence of covalent bonds or
strong molecular interactions, e.g. hydrogen bonding, is one of the possible strat-
egies to tackle the separation effect [30]. To exclude a possible phase separation as
well as to determine the distance of clusters and their amount of order, SAXS
turned out to be a useful method. As an example, we focus in the following to
an inorganic–organic hybrid polymer, i.e. the organic polymer polystyrene was
reinforced with a metal oxo cluster, a schematic being shown in Fig. 5. The scat-
tering intensity of pure polystrene and polystyrene doped with different amounts of
Zr6-clusters (0.24 mol% and 0.87 mol%) is depicted in Fig. 6. Two features are
visible: The peak at large q-values originates from the short-range order of Zr6-
clusters and increases with increasing molar ratio of clusters, and the second
intensity maximum at low q-values being due to the polymer is nearly unaffected
from the amount of clusters.

For extremely dilute systems, the Guinier approximation (Eq. (8)) allows the
determination of the cluster size from the radius of gyration rg [21, 22] from the

Fig. 5. Schematic presentation of a molecular structure of typical metal oxo clusters
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slope in a diagram of the logarithmic intensity vs. the square of the scattering
vector towards small q.

ln ðIðqÞÞ � ln ðIðqÞÞ �
q2r2

g

3
ð8Þ

This approach should be taken with caution due to several reasons: Interparticle
interference may influence the initial part of the scattering curve, which can be
eliminated by measuring with different concentrations and extrapolating to in-
finite dilution. Possible aggregation of particles may also lead to distortion of
the scattering curve. For the evaluation, only q-values q�2�=rg should be taken
into account. Figure 7 shows the Guinier evaluation according to Eq. (8) for the
data as in Fig. 6. The size of spherical clusters is related to the radius of gyration by
(Eq. (9)) [21, 22].

r ¼
ffiffiffiffiffiffiffiffi
5=3

p
rg ð9Þ

An important information is the mean distance d of the clusters. In a first approx-
imation, it can be derived from the maximum of the peak qmax in the scattering
curve by the simple relation of Eq. (10).

d ¼ 2�

qmax

ð10Þ

Strictly speaking, this relation is only correct for a periodic arrangement of
particles with a spacing d, where the maximum corresponds to a sharp Bragg peak.

Fig. 6. Scattering intensity of polystyrene (black symbols) with different amount of Zr6-cluster

(0.24 mol%, dark grey symbols; 0.87 mol%, light grey symbols); the small insert in the figure shows

the data in linear scale to visualize the Zr6-cluster peak; the lines are fits according to Eq. (12)

Small-Angle X-Ray Scattering 535



If there is only a short-range order in the arrangement of the particles, the peak is
broadened and the peak position may also shift considerably, so that Eq. (10) can
only be used for a very rough order-of-magnitude estimate of d.

The evaluation according to Eq. (10) results in a decrease of the cluster distance
from 1.84 to 1.71 nm and an increase of the radius of gyration, Eq. (8), from 0.21 to
0.31 nm with an increasing molar ratio of Zr6-clusters. A more elaborate evaluation
uses the approach proposed by Beaucage [31]. It composes a scattering curve of
two functions, one being based on Guinier’s law and the other on the structurally
limited power law (Eq. (11)).

IðqÞ ¼ g exp ð�q2r2
g=3Þ þ bððerf ðqrg=

ffiffiffi
6

p
ÞÞ3=qÞp ð11Þ

Here g and b are fit parameters depending on the volume of the scatterers, the
scattering contrast, and the experimental equipment, erf is the error function, and p
the exponent of the power law. For multiple structural levels, one has to use two or
more of these functions, where the indices in Eq. (12) denote the different radii of
gyration. This is only valid in the dilute limit, where no interference of the particles
takes place. For a high content of particles, Eq. (12) was supplemented by the
interference function Fðq; k; dÞ describing the concentration effect due to a dense
packing [30, 31]. The correlation distance of the respective scatterers is denoted
by d, k is a packing factor, k ¼ 8V0=V1, with V0 the volume of the primary cluster
and V1 ¼ V=N the average volume provided to each subunit, and V the total
volume provided to N particles. The interference function is here applied to both
distributions, whereas in literature it was taken into account only for the second

Fig. 7. Evaluation from the Guinier approximation for polystyrene doped with Zr6-clusters

(0.24 mol%, dark grey symbols; 0.87 mol%, light grey symbols); the lines are fits according to Eq. (8)
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distribution, as the maximum of the first one was not in the accessible range of the
X-ray equipment [30].

Fðq; k; dÞ ¼ 1

1 þ k�ðq; dÞ ð12Þ

�ðq; dÞ ¼ 3
sin ðqdÞ � qd cos ðqdÞ

ðqdÞ3

and

IðqÞ ¼ g1 exp ð�q2rg1
2=3ÞFðq; k1; d1Þ þ b1 exp ð�q2rg2

2=3Þ
�ððerf ðqrg1=

ffiffiffi
6

p
ÞÞ3=qÞp1Fðq; k1; d1Þ þ g2 exp ð�q2rg2

2=3ÞFðq; k2; d2Þ
þ b2 exp ð�q2rg2

2=3Þððerf ðqrg2=
ffiffiffi
6

p
ÞÞ3=qÞp2Fðq; k2; d2Þ

This approach was successfully applied to describe the structural change as
well as the development of the mechanical properties of a polymer doped with
titanium-oxo-clusters [30]. The main problem in the use of Eq. (12) is the high
number of fit parameters, which complicates the reliability of the fitted parameters
considerably. It is recommended to fit the scattering curve in an iterative way, first
only at high q-values for one distribution and then only at low q-values for the
other to find appropriate starting values for the final fit. A further simplification
is to reduce the number of fit parameters, e.g. to set p2 ¼ 4 for particles with a
smooth surface [30]. Fitting can be performed by an appropriate software such as
Mathematica. As an example, the result from the fit to polystyrene doped with
different amounts of zirconia clusters is shown in Fig. 6 as solid lines, the numer-
ical values of the fit are found in Table 1. From these data, only the packing density
increases, whereas all other parameters are nearly unchanged. Thus, this example
shows that different interpretations may arise when using different models to
describe experimental data.

In some cases, more than two maxima were observed in the scattering curve at
low q-values, which could both be attributed to two characteristic cluster distances,
as in the pure undoped material these peaks were not found. This was interpreted as
an arrangement of clusters in a discotic structure (Fig. 8) [29, 32]. The shorter
distance d1 would then correspond to the inter-cluster distance within piles of discs
and the longer distance d2 to the distance between clusters of neighbouring piles,
which is visualized in Fig. 8. To distinguish between the different kinds of clusters
and to ease the interpretation of SAXS-data, additional chemical information from
the reactivity of the components and from other experimental characterization
techniques such as TEM proved to be very useful [29, 32].

Table 1. Fit values from Eq. (12) to the data shown in Fig. 6; with increasing cluster proportion, the

packing density k2 increases, whereas other parameters are nearly unchanged

rg1=nm p1 k1 d1=nm rg2=nm k2 d2=nm

PSþ 0.24% Zr 16.4 1.33 3.07 39.5 0.406 1.32 1.38

PSþ 0.87% Zr 16.1 1.70 2.85 38.1 0.399 1.73 1.29
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Mesostructured Materials with Long-Range Order

Mesostructured materials with long-range order exhibit Bragg reflections. How-
ever, due to the large dimension of the basic structural units, such reflections are
visible only in the small-angle X-ray scattering range. Figure 9 shows an example
for a material with an ordered structure at the mesoscale, based on a liquid tem-
plating approach from the ethylene glycol route.

The evaluation usually follows the basic evaluation procedures in diffraction
[2, 8, 33, 34]. The distance of the basic structural units is derived from Eq. (10) and
the type of ordering (frequently hexagonal, lamellar, or cubic) from the position of
the respective reflections. The size of the coherent scattering region is frequently
estimated from the full-width at half-maximum �q of the first and usually most
intense reflection, known as Scherrer’s formula (Eq. (13)) [35].

L ¼ K
2�

�q
ð13Þ

Fig. 8. An arrangement of discs may also result in more than two characteristic distances, resulting

in two maxima in the scattering intensities [25, 28]

Fig. 9. Mesostructured material with a hierarchical organization and a periodic ordered structure at

the nanoscale [29]
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Here L is the crystallite size and K a constant close to 1 depending on the shape of
the crystallite. For the application of Eq. (13), the width of the detector=equipment
resolution has to be significantly smaller than the width of the Bragg reflection,
which is not generally the case in particular in small-angle X-ray scattering. Other-
wise, a deconvolution of the scattering signal is necessary. The experimental deter-
mination of the resolution of the equipment requires a crystal of infinite size with a
lattice constant in the same range as the specimens to be measured, which is in
general not easily available. A possible material coming close to these require-
ments is rat tail tendon in the direction of the reflections of the D-period.

Advanced evaluation procedures were developed to determine the size and dis-
tance distributions as well as the orientation of the lamellae of preferably oriented
nanocomposite films [36, 37] and the structural parameters of weakly ordered
membrane systems by line-shape analysis [38]. However, extensive experience
in scattering theory is required. Also, the description of the dimension of a
three-phase systems with a hydrophobic, a micro-, and a mesoporous domain is
available [39]. For the sake of simplicity, we restrict ourselves here only to a two-
phase system (material=no material). The intensity ratio of the reflections of
hexagonally arranged long and elongated cylinders allows the simultaneous deter-
mination of the distance and the wall thickness of the cylinders by making use of
the following three assumptions: a) the cylinders are infinitely long with radius rc,
which results in the form factor (Eq. (14)) [21].

PðqÞ ¼ 4�r2
c

q

�
J1ðqrcÞ
qrc

�2

ð14Þ

b) The cylinders are arranged in a hexagonal lattice with a certain size distribution,
which can be described by a Gaussian or Lorentzian function, and c) the half-width
of the reflection increases with increasing number due to the higher lattice distor-
tion for the higher orders of the reflections. A complete description additionally has
to take into account the intensity decrease and the line broadening due to the
Lorentz-factor, the Debye-Waller factor, and the limited size of the lattice. To ob-
tain the experimental scattering intensity Iexp(q), the theoretical intensity Ith(q) is
convolved with the resolution function of the equipment, Eq. (15).

IexpðqÞ ¼ IthðqÞ � resðqÞ ð15Þ

A numerically faster procedure is the use of the convolution theorem and
Fourier transforms (Eq. (16)).

IexpðqÞ ¼ F�1ðFðIthðqÞÞFðresðqÞÞÞ ð16Þ

The intensity ratio of the first reflections was used to determine the diameter
and the wall thickness of hexagonally arranged structural units and was compared
to the results from BET measurements [8]. Figure 10 shows experimental SAXS-
data for materials with two different wall thicknesses and comparable distance of
the hexagonally arranged cylindrical basic units. In the insert of Fig. 10, an enlarge-
ment is depicted for better visualization of the two higher reflections. For the
smaller wall thickness, the second reflection is higher than the third, whereas the
opposite is the case for a larger wall thickness. A calculation according to Eq. (15)
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is presented in Fig. 11, which visualizes the strong effect of a change in the wall
thickness on the intensities of the higher reflections.

Time-Resolved Characterization of Structures

The high intensity of X-ray beams from synchrotron radiation sources allows to
improve the position and=or time resolution in comparison to laboratory equip-
ments by orders of magnitude. This enables the direct observation of the formation
of the network of inorganic–organic materials during processing [18, 25] or

Fig. 10. SAXS data for a mesoporous silica monolith with different wall thicknesses: a) cylinder–

cylinder distance 13.9 nm and wall thickness 2.8 nm with the second reflection exhibiting a higher

intensity than the third, b) cylinder–cylinder distance 13.9 nm and wall thickness 4.5 nm with the

opposite behavior
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thermal treatment [40], nucleation and growth of silica colloids [41], the study of
in situ phase transformations [42], or in situ development of ordered cell wall
structures in mesoporous hybrid materials [43]. Figure 12 shows as an example

Fig. 11. Simulation of the intensity of the reflections with a cylinder–cylinder distance of 13.5 nm

and a varying wall thickness: 2 nm, solid line; 3 nm, dotted line; 4 nm, dashed-dotted line; 5 nm,

dashed line; the insert is an enlargement for better visualization of the relative change of the intensity

of the higher reflections

Fig. 12. Intensity increase of a gel prepared from a silica=titania single-source precursor during gelation

measured in-situ using X-rays from a synchrotron radiation source; the particle size r (right arrow)

remains nearly constant, whereas the cluster size � (left arrow) increases continuously in real space
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the development of the network structure of a gel, prepared from a silica=titania
single-source precursor, during the gelation process. The growth of the cluster size
is visualized by the left arrow, whereas the particle size remains nearly unchanged
(right arrow). A numerical evaluation of the cluster and the particle size as well as
the fractal dimension was performed by using Eq. (2) [18, 25].

X-Rays were also successfully applied to investigate the change in the reflec-
tion of a long-range ordered mesoporous material during processing [44]. Even the
supercritical drying procedure with high pressure and elevated temperatures can be
followed [44] by the use of a specially designed pressure cell equipped with dia-
mond windows [45].

Conclusion

SAXS is a powerful method to characterize the nanostructure of inorganic–organic
hybrid materials. Numerous evaluation procedures were developed and applied to
polydisperse systems as well as systems with short or long range order. In a short
review, some of the most useful methods are presented, which should help scien-
tists from materials chemistry or chemical engineering in the application of these
evaluation techniques and in the comprehension of the background from materials
physics.
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